Answer
$-\dfrac{20}{3}$
Work Step by Step
Simplify the expressions inside the parentheses to using their LCD obtain:
\begin{align*}
&=\left(\frac{3}{6}+\frac{2}{6}\right)\div \left(\frac{2}{8}-\frac{3}{8}\right)\\\\
&=\left(\frac{5}{6}\right)\div \left(-\frac{1}{8}\right)\\\\
\end{align*}
Use the rule $\dfrac{a}{b} \div \dfrac{c}{d}=\dfrac{a}{b} \times \dfrac{d}{c}$ to obtain:
\begin{align*}
\require{cancel}
&=\left(\frac{5}{6}\right) \times \left(-\frac{8}{1}\right)\\\\
&=\left(\frac{5}{\cancel{6}3}\right) \times \left(-\frac{\cancel{8}4}{1}\right)\\\\
&=\frac{-20}{3}
\end{align*}