University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Exercises - Page 550: 61

Answer

$\dfrac{1}{(1+x)^2} =1-2x+3x^2-4x^3+.....; |x| \lt 1$

Work Step by Step

The Taylor series for $\dfrac{-1}{1+x} $ can be defined as: $\dfrac{-1}{1+x}=-\dfrac{-1}{1-(-x)}= -1+x-x^2+x^3-......+x^n+.....; |x| \lt 1$ Consider the given series: $\dfrac{d}{dx}(\dfrac{-1}{1+x}) =\dfrac{d}{dx} [ -1+x-x^2+x^3-......+x^n+.....]$ or, $\dfrac{1}{(1+x)^2} =0+1-2x+3x^2-4x^3+.....$ or, $\dfrac{1}{(1+x)^2} =1-2x+3x^2-4x^3+.....; |x| \lt 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.