Answer
$$\dfrac{-1}{(1+x)^2} ; |x| \lt 1 $$
Work Step by Step
The Taylor series for $\dfrac{1}{1-x} $ can be defined as: $\dfrac{1}{1-x}= 1+x+x^2+......+x^n+.....; |x| \lt 1$
Consider the given series:
$\\=-1+2x-3x^2+4x^3-.....\\=\dfrac{d}{dx} [1-x+x^2-x^3+x^4-......]\\=\dfrac{d}{dx} (1/1+x) \\=\dfrac{-1}{(1+x)^2} ; |x| \lt 1 $