University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Exercises - Page 550: 39

Answer

$\dfrac{3}{2}$

Work Step by Step

The Taylor series for $\cos x $ can be defined as: $\cos x=1-\dfrac{ x^2}{2!}+\dfrac{x^4}{4!}-....$ and the Taylor series for $\sin x $ can be defined as: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ We have $\lim\limits_{x \to 0} \dfrac{\sin x^2}{1- \cos 2x}=\lim\limits_{x \to 0} \dfrac{3x^2-(9/2) x^6+(81/40) x^{10} -....}{2x^2-(2/3) x^4 +(4/45) x^6-...} \\= \dfrac{ \lim\limits_{x \to 0}[3x^2-(9/2) x^6+(81/40) x^{10} -....]}{ \lim\limits_{x \to 0}[2x^2-(2/3) x^4 +(4/45) x^6-...]} \\ =\dfrac{3-0+0-...}{2-0+0-.....}\\=\dfrac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.