University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Exercises - Page 550: 40

Answer

$$1$$

Work Step by Step

The Taylor series for $\ln (1+x)$ can be defined as: $\ln (1+x)=x-\dfrac{ x^2}{2}+\dfrac{x^3}{3}-....$ and the Taylor series for $\sin x $ can be defined as: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ We have $\lim\limits_{x \to 0} \dfrac{\ln (1+x^3)}{x \sin x^2}=\lim\limits_{x \to 0} \dfrac{x^3-\dfrac{x^6}{2}+\dfrac{x^9}{3} -....}{x^3-\dfrac{x^7}{6}+\dfrac{x^{11}}{120} -} \\= \dfrac{\lim\limits_{x \to 0}[x^3-\dfrac{x^6}{2}+\dfrac{x^9}{3} -....]}{\lim\limits_{x \to 0}[x^3-\dfrac{x^7}{6}+\dfrac{x^{11}}{120} -...]} \\ =\dfrac{1-0+0-...}{1-0+0-.....}\\=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.