University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.5 - Lines and Planes in Space - Exercises - Page 631: 49

Answer

$\theta =1.76 rad$

Work Step by Step

The formula to calculate the angle between two planes is: $ \theta = \cos ^{-1} (\dfrac{p \cdot q}{|p||q|})$ Here, $p=\lt 2,2,2 \gt$ and $q=\lt 2,-2,-1 \gt$ $|p|=\sqrt{2^2+2^2+2^2}=2 \sqrt 3$ and $|q|=\sqrt{2^2+(-2)^2+(-1)^2}=\sqrt 9=3$ Thus, $ \theta = \cos ^{-1} (\dfrac{p \cdot q}{|p||q|})=\cos ^{-1} (\dfrac{3}{ 2\sqrt 3 (3)})=\cos ^{-1} (\dfrac{-1}{ 3\sqrt 3})$ or, $\theta =1.76 rad$ Our acute angle will be: $3.14 -1.76=1.38$ rad
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.