University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.2 - Vectors - Exercises - Page 608: 29

Answer

$\dfrac{1}{\sqrt 2}(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$

Work Step by Step

Here, $v=\dfrac{1}{\sqrt6}i-\dfrac{1}{\sqrt6}j-\dfrac{1}{\sqrt6}k$ and $|v|=\sqrt{(\dfrac{1}{\sqrt6})^2+(\dfrac{-1}{\sqrt6})^2+(\dfrac{-1}{\sqrt6})^2}=\sqrt {\dfrac{25}{25}}=\dfrac{1}{\sqrt 2}$ The unit vector $\hat{\textbf{v}}$ can be calculated as: $\hat{\textbf{v}}=\dfrac{v}{|v|}$ Now, $\hat{\textbf{v}}=\dfrac{\dfrac{1}{\sqrt6}i-\dfrac{1}{\sqrt6}j-\dfrac{1}{\sqrt6}k}{\dfrac{1}{\sqrt 2}}=(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$ Thus, $v=|v|\hat{\textbf{v}}=\dfrac{1}{\sqrt 2}(\dfrac{1}{\sqrt3}i-\dfrac{1}{\sqrt 3}j-\dfrac{1}{\sqrt 3}k)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.