Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 9

Answer

$a.\quad 4$ $ b.\quad 0$

Work Step by Step

$a.$ Applying th.7, let $u=g(x)=1+x^{2}$ (a continuous function). Then, $\quad du=g'(v)dv=2xdx,\qquad 4xdx=2\cdot du$ and, the borders change to $g(0)=1$ and $g(\sqrt{3})=4$. $\displaystyle \int_{0}^{\sqrt{3}}\frac{4x}{\sqrt{x^{2}+1}}dr=\int_{1}^{4}\frac{2du}{u^{1/2}}=2\int_{1}^{4}u^{-1/2}du$ $=2\displaystyle \left[ \frac{u^{-1/2+1}}{-1/2+1} \right]_{1}^{4}$ $=2\displaystyle \left[ \frac{u^{1/2}}{1/2} \right]_{1}^{4}$ $=4\left[ u^{1/2} \right]_{1}^{4}$ $=4(2-1)$ $=4$ $b.$ Using the same substitution, $u=1+x^{2},\ du=2xdx$, the borders here change to $g(-\sqrt{3})=4$ and $g(\sqrt{3})=4$. $\displaystyle \int_{-\sqrt{3}}^{\sqrt{3}}\frac{4x}{\sqrt{x^{2}+1}}dr=\int_{4}^{4}\frac{2du}{u^{1/2}} = 0,$ (zero width integral)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.