Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 19

Answer

$3^{5/2}-1$

Work Step by Step

Applying th.7, let $u=g(t)=5-4\cos t \quad $(a continuous function). Then, $g'(t)=-4(-\sin t)=4\sin t$ Then, $\quad \left[\begin{array}{ll} u=5-4\cos t & du=g'(t)dt\\ & du=4\sin tdt\\ & \sin tdt=\frac{du}{4} \end{array}\right]$, and, the borders change to $g(0)=5-4=1$ and $\quad g(\pi)=5-4(-1)=9$ $\displaystyle \int_{0}^{\pi}5(5-4\cos t)\sin tdt=\int_{1}^{9}5u^{1/4}\cdot(\frac{du}{4}) =\frac{5}{4}\int_{1}^{9}u^{-1/4}du$ $=\displaystyle \frac{5}{4}\left[ \frac{u^{1/4+1}}{1/4+1} \right]_{1}^{9}$ $=\displaystyle \frac{5}{4}\left[ \frac{u^{5/4}}{5/4} \right]_{1}^{9}$ $=\displaystyle \frac{5}{4}\cdot\frac{4}{5}\left[ u^{5/4} \right]_{1}^{9}$ $=(9^{5/4}-1)$ $=[(3^{2})^{5/4}-1]$ $=3^{5/2}-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.