Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 8

Answer

$a.\quad \displaystyle \frac{10}{3}$ $ b.\quad \displaystyle \frac{70}{27}$

Work Step by Step

$a.$ Applying th.7, let $u=g(v)=1+v^{3/2}$ (a continuous function). Then, $\displaystyle \quad du=g'(v)dv=\frac{3}{2}v^{1/2}dv,\qquad \sqrt{v}dv=\frac{2du}{3}$ and, the borders change to $g(0)=1$ and $g(1)=2$. $\displaystyle \int_{0}^{1}\frac{10\sqrt{v}}{(1+v^{3/2})^{2}}dr=\int_{1}^{2}\frac{10}{u^{2}}\cdot\frac{2du}{3}=\frac{20}{3}\int_{1}^{2}u^{-2}du$ $=\displaystyle \frac{20}{3}\left[ \frac{u^{-2+1}}{-2+1} \right]_{1}^{2}$ $=\displaystyle \frac{20}{3}\left[-u^{-1} \right]_{1}^{2}$ $=\displaystyle \frac{20}{3}(-\frac{1}{2}+1)$ $=\displaystyle \frac{20}{3}\cdot\frac{1}{2}$ $=\displaystyle \frac{10}{3}$ $b.$ Using the same substitution, $u=g(v)=1+v^{3/2}, \displaystyle \ \ =\frac{3}{2}v^{1/2}dv,\qquad \sqrt{v}dv=\frac{2du}{3}$ here, the borders change to $g(1)=2$ and $g(4)=1+4^{3/2}=1+(2^{2})^{3/2}=1+2^{3}=9$. $\displaystyle \int_{0}^{1}\frac{10\sqrt{v}}{(1+v^{3/2})^{2}}dr=\int_{2}^{9}\frac{10}{u^{2}}\cdot\frac{2du}{3}=\frac{20}{3}\int_{2}^{9}u^{-2}du$ $=\displaystyle \frac{20}{3}\left[ \frac{u^{-2+1}}{-2+1} \right]_{2}^{9}$ $=\displaystyle \frac{20}{3}\left[-u^{-1} \right]_{2}^{9}$ $=\displaystyle \frac{20}{3}(-\frac{1}{9}+\frac{1}{2})$ $=\displaystyle \frac{20}{3}\cdot\frac{7}{18}$ $=\displaystyle \frac{70}{27}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.