Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 12

Answer

$a.\quad \displaystyle \frac{1}{6}$ $ b.\quad \displaystyle \frac{1}{2}$

Work Step by Step

$a.$ Applying th.7, let $u=g(t)=1-\cos 3t$ (a continuous function). Then, $\quad du=g'(t)dt=-[(-\sin 3t)\cdot 3]\cdot dt=(3\sin 3t)dt $ and, the borders change to $g(0)=1-1=0$ and $g(\displaystyle \frac{\pi}{6})=1-\cos\frac{\pi}{2}=1.$ $\displaystyle \int_{0}^{\pi/6}(1-\cos 3t)\sin 3tdt=\int_{0}^{1}u\cdot\frac{1}{3}du =\frac{1}{3} \int_{0}^{1}udu$ $=\displaystyle \frac{1}{3}\left[ \frac{u^{2}}{2} \right]_{0}^{1}$ $=\displaystyle \frac{1}{3}(\frac{1}{2}-0)$ $=\displaystyle \frac{1}{6}$ $a.$ Applying the same substitution, the borders here change to $g(\displaystyle \frac{\pi}{6})=1-\cos\frac{\pi}{2}=1$ and $g(\displaystyle \frac{\pi}{3})=1-\cos\pi=2$ $\displaystyle \int_{\pi/6}^{\pi/3}(1-\cos 3t)\sin 3tdt=\int_{1}^{2}u\cdot\frac{1}{3}du =\frac{1}{3} \int_{1}^{2}udu$ $=\displaystyle \frac{1}{3}\left[ \frac{u^{2}}{2} \right]_{1}^{2}$ $=\displaystyle \frac{1}{3}(\frac{4}{2}-\frac{1}{2})$ $=\displaystyle \frac{1}{3}(\frac{3}{2})$ $=\displaystyle \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.