Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 21

Answer

$3$

Work Step by Step

Applying th.7, let $u=g(y)=4y-y^{2}+4y^{3}+1 \quad$ (a continuous function). Then, $g'(y)=4-2y+12y^{2}=12y^{2}-2y+4.$ Then, $\quad \left[\begin{array}{ll} u=4y-y^{2}+4y^{3}+1 & du=g'(y)dy\\ & du=(12y^{2}-2y+4)dy \\ & \end{array}\right]$, and, the borders change to $g(0)=0-0+0+1=1$ and $\quad g(1)=4-1+4+1=8$ $\displaystyle \int_{0}^{1}(4y-y^{2}+4y^{3}+1 )^{-2/3}(12y^{2}-2y+4)dy=\displaystyle \int_{1}^{8}u^{-2/3}du$ $=\displaystyle \left[ \frac{u^{-2/3+1}}{-2/3+1} \right]_{1}^{8}$ $=\displaystyle \left[ \frac{u^{1/3}}{1/3} \right]_{1}^{8}$ $=3\left[ u^{1/3} \right]_{1}^{8}$ $=3(8^{1/3}-1)$ $=3(2-1)$ $=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.