Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 174: 4

Answer

$L(x)=\frac{1}{12}x-\frac{4}{3}$

Work Step by Step

Step 1. $f(x)=\sqrt[3] x=(x)^{1/3}$, $f'(x)=\frac{1}{3}x^{-2/3}=\frac{1}{3\sqrt[3] {x^2}}$, Step 2. $f(-8)=-2$, $f'(-8)=\frac{1}{3\sqrt[3] {(-8)^2}}=\frac{1}{12}$, Step 3. The linearization at $x=-8$ is $L(x)=f(-8)+f'(-8)(x+8)=-2+\frac{1}{12}(x+8)=\frac{1}{12}x-\frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.