Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 174: 14

Answer

a. $1-6x$, b. $2+2x$, c. $1-\frac{1}{2}x$, d. $\sqrt 2 (1+\frac{1}{4}x^2)$, e. $\sqrt[3] 4(1+\frac{1}{4}x)$, f. $1-\frac{2x}{6+3x}$

Work Step by Step

Use the linear approximation is: $(1+x)^k=1+kx$ a. $f(x)=(1-x)^6=1+6(-x)=1-6x$, b. $f(x)=\frac{2}{1-x}=2(1-x)^{-1}=2(1-1(-x))=2+2x$, c. $f(x)=\frac{1}{\sqrt {1+x}}=(1+x)^{-1/2}=1-\frac{1}{2}x$, d. $f(x)=\sqrt {2+x^2}=\sqrt 2\sqrt {1+x^2/2}=\sqrt 2 (1+x^2/2)^{1/2}=\sqrt 2 (1+\frac{1}{2}(x^2/2))=\sqrt 2 (1+\frac{1}{4}x^2)$, e. $f(x)=(4+3x)^{1/3}=4^{1/3}(1+3x/4)^{1/3}=4^{1/3}(1+\frac{1}{3}(3x/4))=4^{1/3}(1+\frac{1}{4}x)$, f. $f(x)=\sqrt[3] {(1-\frac{x}{2+x})^2}=(1-\frac{x}{2+x})^{2/3}=1+\frac{2}{3}(\frac{-x}{2+x})=1-\frac{2x}{6+3x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.