Answer
$10x-13$
Work Step by Step
The linearization of $ f(x)$ at $ x=a $ is
$ L(x)=f(a)+f'(a)(x-a)$
Knowing that $ f(x)=x^{3}-2x+3$, $ f'(x)=3x^{2}-2$ and $ a=2$, we have:
$ L(x)=(2^{3}-2\times2+3)+(3\times2^{2}-2)(x-2)$
$=7+10x-20=10x-13$