Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.9 - Linearization and Differentials - Exercises 3.9 - Page 174: 12

Answer

$L(x)=\frac{1}{4}x+\frac{1}{4}$

Work Step by Step

Step 1. $f(x)=\frac{x}{x+1}$, $f'(x)=\frac{x+1-x}{(x+1)^2}=\frac{1}{(x+1)^2}$, Step 2. Choose $x=1$, $f(1)=\frac{1}{2}$, $f'(1)=\frac{1}{(1+1)^2}=\frac{1}{4}$ Step 3. The linearization at $x=1$ is $L(x)=f(1)+f'(1)(x-0)=\frac{1}{2}+\frac{1}{4}(x-1)=\frac{1}{4}x+\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.