Answer
$0.28$ L/min (increase)
Work Step by Step
Step 1. We are given $y=\frac{Q}{D}$, $Q=233, D=41$, and $\frac{dD}{dt}=-2$ unit/min; $Q$ is a constant.
Step 2. Differentiate the above $y$ equation:
$\frac{dy}{dt}=-\frac{Q}{D^2}\frac{dD}{dt}=-\frac{233}{41^2}(-2)=\frac{466}{1681}\approx0.28$ L/min (increase)