Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 164: 38

Answer

$-2~rad/s$ (decrease) $1~rad/sec$ (increase)

Work Step by Step

Step 1. Given $y=132ft$, $v=\frac{dx}{dt}=-264ft/sec$ Step 2. $tan\theta=\frac{x}{y}=\frac{x}{132}$ and $sec^2\theta\frac{d\theta}{dt}=\frac{1}{132}\frac{dx}{dt}=\frac{-264}{132}=-2$ Step 3. When the car is right in front, we have $\theta=0, cos^20=1$, thus $\frac{d\theta}{dt}=-2cos^20=-2rad/s$ (decrease) Step 4. After $0.5sec$ pass through the origin, we have $x=264(0.5)=132ft, \frac{dx}{dt}=264ft/sec$ . In this case $cos\theta=\frac{132}{\sqrt {132^2+132^2}}=\frac{\sqrt 2}{2}$. Thus $\frac{d\theta}{dt}=cos^2\theta\frac{1}{132}\frac{dx}{dt}=\frac{264}{132(2)}=1rad/sec$ (increase)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.