Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 163: 34

Answer

a. $\frac{10}{9\pi} in/min$. b. $-\frac{8}{5\pi}in/min$

Work Step by Step

Given $\frac{dV_1}{dt}=-10in^3/min$ from the top cone: a. The rate of volume increase of the bottom cylinder is $\frac{dV_2}{dt}=10in^3/min$. Using $V_2=\pi r_2^2h_2=\pi 3^2h_2=9\pi h_2$, we have $\frac{dV_2}{dt}=9\pi\frac{dh_2}{dt}=10$; thus $\frac{dh_2}{dt}=\frac{10}{9\pi} in/min$. b. For the cone, $V_1=\frac{1}{3}\pi r^2 h$ and $\frac{r}{h}=\frac{3}{6}=\frac{1}{2}$ or $r=\frac{1}{2}h$. Thus $V_1=\frac{1}{12}\pi h^3$ and $\frac{dV_1}{dt}=\frac{3}{12}\pi h^2\frac{dh}{dt}=-10$. At $h=5in$, we get $\frac{1}{4}\pi 5^2\frac{dh}{dt}=-10$, which gives $\frac{dh}{dt}=-\frac{8}{5\pi}in/min$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.