Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 164: 41

Answer

$-\frac{5}{72\pi} in/min$ (decreasing) $-\frac{10}{3} in^2/min$ (decreasing)

Work Step by Step

Step 1. We are given $2R_0=8, R_0=4in, \frac{dV}{dt}=-10in^3/min$ Step 2. The thickness $z$ of the ice gives a total radius of $r=4+z$ Step 4. Total volume $V=\frac{4}{3}\pi r^3$ and $\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}=4\pi r^2\frac{dz}{dt}$ Step 5. Plug-in the numbers; we have $-10=4\pi (4+2)^2\frac{dz}{dt}$, which gives $\frac{dz}{dt}=-\frac{5}{2\pi(36)}=-\frac{5}{72\pi} in/min$ (decreasing) Step 6. Surface area $A=4\pi r^2$, $\frac{dA}{dt}=8\pi r\frac{dr}{dt}=8\pi (4+2)(-\frac{5}{72\pi} )=-\frac{10}{3} in^2/min$ (decreasing)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.