Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.3 Differentiation Rules - Exercises 3.3 - Page 125: 42

Answer

a. $-2$ b. $\frac{2}{25}$ c. $-\frac{1}{2}$ d. $-7$

Work Step by Step

Given $u(1)=2, u'(1)=0, v(1)=5, v'(1)=-1$, we have: a. $\frac{d}{dx}(uv)=u\frac{dv}{dx}+v\frac{du}{dx}=(uv'+vu' )|_{x=1}=2(-1)+(5)(0)=-2$ b. $\frac{d}{dx}(\frac{u}{v})=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}=(\frac{vu'-uv'}{v^2})|_{x=1}=\frac{(5)(0)-(2)(-1)}{(5)^2}=\frac{2}{25}$ c. $\frac{d}{dx}(\frac{v}{u})=\frac{u\frac{dv}{dx}-v\frac{du}{dx}}{u^2}=(\frac{uv'-vu'}{u^2})|_{x=1}=\frac{(2)(-1)-(5)(0)}{(2)^2}=-\frac{1}{2}$ d. $\frac{d}{dx}(7v-2u)=(7v'-2u')|_{x=1}=7(-1)-2(0)=-7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.