Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.3 Differentiation Rules - Exercises 3.3 - Page 125: 23

Answer

The Derivative is: $f'(s)=\frac{1}{\sqrt{s}(\sqrt{s}+1)^2}$

Work Step by Step

$f(s)=\frac{\sqrt{s}-1}{\sqrt{s}+1}$ Using Quotient Rule to find the Derivative: $y'=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{g^2(x)}$ $f'(s)=\frac{(\frac{1}{2}\cdot \frac{1}{\sqrt{s}}-0)(\sqrt{s}+1)-(\sqrt{s}-1)(\frac{1}{2}\cdot \frac{1}{\sqrt{s}}+0)}{(\sqrt{s}+1)^2}$ $f'(s)=\frac{\frac{1}{2\sqrt{s}}(\sqrt{s}+1)-\frac{1}{2\sqrt{s}}(\sqrt{s}-1)}{(\sqrt{s}+1)^2}$ $f'(s)=\frac{\frac{1}{2\sqrt{s}}(\sqrt{s}+1-\sqrt{s}+1)}{(\sqrt{s}+1)^2}$ $f'(s)=\frac{\frac{1}{2\sqrt{s}}(2)}{(\sqrt{s}+1)^2}$ $f'(s)=\frac{\frac{1}{\sqrt{s}}}{(\sqrt{s}+1)^2}$ $f'(s)=\frac{1}{\sqrt{s}(\sqrt{s}+1)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.