Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.3 Differentiation Rules - Exercises 3.3 - Page 125: 26

Answer

The Derivative is: $r'=\frac{\theta-1}{\theta^{\frac{3}{2}}}$

Work Step by Step

$r=2(\frac{1}{\sqrt{\theta}}+\sqrt{\theta})$ $r=2(\frac{1\space+\space\theta}{\sqrt{\theta}})$ Using Quotient Rule to find the Derivative: $y'=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{g^2(x)}$ $r'=2(\frac{(0+(1)\theta^{1-1})(\sqrt{\theta})-(1+\theta)((\frac{1}{2})\theta^{\frac{1}{2}-1})}{(\sqrt{\theta})^2})$ $r'=2(\frac{\sqrt{\theta}-(1+\theta)(\frac{1}{2\sqrt{\theta}})}{\theta})$ $r'=2(\frac{\sqrt{\theta}-\frac{1-\theta}{2\sqrt{\theta}})}{\theta}$ $r'=2(\frac{\frac{2\theta-1-\theta}{2\sqrt{\theta}}}{\theta})$ $r'=2(\frac{\theta-1}{2\theta\sqrt{\theta}})$ $r'=\frac{\theta-1}{\theta\sqrt{\theta}}$ $r'=\frac{\theta-1}{\theta^{\frac{3}{2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.