Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 177: 30

Answer

$$\frac{{ds}}{{dt}} = \frac{3}{{{{\left( {15t - 1} \right)}^4}}}$$

Work Step by Step

$$\eqalign{ & s = - \frac{1}{{15{{\left( {15t - 1} \right)}^3}}} \cr & {\text{rewrite the function}} \cr & s = - \frac{1}{{15}}{\left( {15t - 1} \right)^{ - 3}} \cr & {\text{differentiate with respect to }}t \cr & \frac{{ds}}{{dt}} = - \frac{1}{{15}}\frac{d}{{dt}}\left[ {{{\left( {15t - 1} \right)}^{ - 3}}} \right] \cr & {\text{use the chain rule}} \cr & \frac{{ds}}{{dt}} = - \frac{1}{{15}}\left( { - 3} \right){\left( {15t - 1} \right)^{ - 4}}\frac{d}{{dt}}\left[ {15t - 1} \right] \cr & {\text{find the derivative and simplify}} \cr & \frac{{ds}}{{dt}} = \frac{1}{5}{\left( {15t - 1} \right)^{ - 4}}\left( {15} \right) \cr & \frac{{ds}}{{dt}} = 3{\left( {15t - 1} \right)^{ - 4}} \cr & \frac{{ds}}{{dt}} = \frac{3}{{{{\left( {15t - 1} \right)}^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.