Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 177: 13

Answer

$$\frac{{ds}}{{dt}} = 8{\cos ^3}\left( {1 - 2t} \right)\sin \left( {1 - 2t} \right)$$

Work Step by Step

$$\eqalign{ & s = {\cos ^4}\left( {1 - 2t} \right) \cr & {\text{differentiate with respect to }}t \cr & \frac{{ds}}{{dt}} = \frac{d}{{dt}}\left[ {{{\cos }^4}\left( {1 - 2t} \right)} \right] \cr & {\text{use the chain rule}} \cr & \frac{{ds}}{{dt}} = 4{\cos ^3}\left( {1 - 2t} \right)\frac{d}{{dt}}\left[ {\cos \left( {1 - 2t} \right)} \right] \cr & \frac{{ds}}{{dt}} = 4{\cos ^3}\left( {1 - 2t} \right)\left( { - \sin \left( {1 - 2t} \right)} \right)\frac{d}{{dt}}\left[ {1 - 2t} \right] \cr & {\text{find the derivative and simplify}} \cr & \frac{{ds}}{{dt}} = 4{\cos ^3}\left( {1 - 2t} \right)\left( { - \sin \left( {1 - 2t} \right)} \right)\left( { - 2} \right) \cr & \frac{{ds}}{{dt}} = 8{\cos ^3}\left( {1 - 2t} \right)\sin \left( {1 - 2t} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.