Answer
$ \bar{x}=\bar{y}=\frac{4 a}{3 \pi}$
Work Step by Step
Since
\begin{align*}
M&=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d y d x\\
&=\frac{\pi a^{2}}{4} ; \\
M_{y}&=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x d y d x\\
&=\int_{0}^{a}[x y]_{0}^{\sqrt{a^{2}-x^{2}}} d x\\
&=\int_{0}^{a} x \sqrt{a^{2}-x^{2}} d x\\
&=\frac{a^{3}}{3}
\end{align*}
Then by symmetry
$ \bar{x}=\bar{y}=\frac{4 a}{3 \pi}$