Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.6 - Moments and Centers of Mass - Exercises 15.6 - Page 908: 14

Answer

$$ \bar{x}=\frac{8}{15}\ \text{ and }\ \bar{y}=\frac{8}{15}$$ $$I_{x} =\frac{1}{6}$$

Work Step by Step

Since \begin{align*} M&=\int_{0}^{1} \int_{y^{2}}^{2 y-y^{2}}(y+1) d x d y\\ &=\int_{0}^{1}\left(2 y-2 y^{3}\right) d y\\ &=\frac{1}{2} \\ M_{x}&=\int_{0}^{1} \int_{y^{2}}^{2 y-y^{2}} y(y+1) d x d y\\ &=\int_{0}^{1}\left(2 y^{2}-2 y^{4}\right) d y\\ &=\left(\frac{2}{3} y^{3}-\frac{2}{5} y^{5}\right)\bigg|_{0}^{1} \\ &=\frac{4}{15}\\ M_{y}&=\int_{0}^{1} \int_{y^{2}}^{2 y-y^{2}} x(y+1) d x d y\\ &=\int_{0}^{1}\left(2 y^{2}-2 y^{4}\right) d y\\ &=\left(\frac{2}{3} y^{3}-\frac{2}{5} y^{5}\right)\bigg|_{0}^{1} \\ &=\frac{4}{15} \end{align*} Then $$ \bar{x}=\frac{8}{15}\ \text{ and }\ \bar{y}=\frac{8}{15}$$ and \begin{align*} I_{x}&=\int_{0}^{1} \int_{y^{2}}^{2 y-y^{2}} y^{2}(y+1) d x d y\\ &=2 \int_{0}^{1}\left(y^{3}-y^{5}\right) d y\\ &=2\left(\frac{1}{4}y^{4}-\frac{1}{6}y^{6}\right) \bigg|_{0}^{1}\\ &=\frac{1}{6} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.