Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.6 - Moments and Centers of Mass - Exercises 15.6 - Page 908: 12

Answer

$$23 \sqrt{3}$$

Work Step by Step

Since \begin{align*} M&=\int_{-\sqrt{3} / 2}^{\sqrt{3} / 2} \int_{4 y^{2}}^{\sqrt{12-4 y^{2}}} 5 x d x d y\\ &=5 \int_{-\sqrt{3} / 2}^{\sqrt{3} / 2}\left[\frac{x^{2}}{2}\right]_{4 y^{2}}^{\sqrt{12-4 y^{2}}} d y\\ &=\frac{5}{2} \int_{-\sqrt{3} / 2}^{\sqrt{3} / 2}\left(12-4 y^{2}-16 y^{4}\right) d y\\ &= \frac{5}{2}\left(12y-\frac{4}{3} y^{3}-\frac{16}{5} y^{5}\right) \bigg|_{-\sqrt{3} / 2}^{\sqrt{3} / 2} \\ &=23 \sqrt{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.