Answer
$$ M=9 \delta, \ \ I_x= 27 \delta, \ \ I_y=27 \delta$$
Work Step by Step
Since
\begin{align*}
M&=\delta \int_{0}^{3} \int_{0}^{3} d y d x\\
&=\delta \int_{0}^{3} 3 d x\\
&=9 \delta
\end{align*}
and
\begin{align*}
I_{x}&=\delta \int_{0}^{3} \int_{0}^{3} y^{2} d y d x\\
&=\delta \int_{0}^{3}\left[\frac{y^{3}}{3}\right]_{0}^{3} d x\\
&=27 \delta
\end{align*}
and
\begin{align*}
I_{y}&=\delta \int_{0}^{3} \int_{0}^{3} x^{2} d y d x\\
&=\delta \int_{0}^{3}\left[x^{2} y\right]_{0}^{3} d x\\
&=\delta \int_{0}^{3} 3 x^{2} d x\\
&=27 \delta
\end{align*}