Answer
$ \bar{x}=1$ and $\bar{y}=1$
Work Step by Step
Since
\begin{align*}
M&=\int_{0}^{3} \int_{0}^{3-x} d y d x\\
&=\int_{0}^{3}(3-x) d x\\
&=\frac{9}{2} \\
M_{y}&=\int_{0}^{3} \int_{0}^{3-x} x d y d x\\
&=\int_{0}^{3}[x y]_{0}^{3-x} d x\\
&=\int_{0}^{3}\left(3 x-x^{2}\right) d x\\
&=\frac{9}{2}
\end{align*}
Then by symmetry
$ \bar{x}=1$ and $\bar{y}=1$