Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.5 - Solving Polynomial Equations - Exercises - Page 30: 41

Answer

$$x = \pm \frac{1}{{\sqrt 2 }},{\text{ }}x = \pm 1$$

Work Step by Step

$$\eqalign{ & 2{x^6} - {x^4} - 2{x^2} + 1 = 0 \cr & {\text{Grouping terms}} \cr & \left( {2{x^6} - {x^4}} \right) - \left( {2{x^2} - 1} \right) = 0 \cr & {\text{Factoring}} \cr & {x^4}\left( {2{x^2} - 1} \right) - \left( {2{x^2} - 1} \right) = 0 \cr & \left( {2{x^2} - 1} \right)\left( {{x^4} - 1} \right) = 0 \cr & \left( {2{x^2} - 1} \right)\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right) = 0 \cr & {\text{Zero - factor property}} \cr & 2{x^2} - 1 = 0,{\text{ }}\underbrace {{x^2} + 1 = 0}_{{\text{No real solutions}}},{\text{ }}{x^2} - 1 = 0 \cr & {x^2} = \frac{1}{2},{\text{ }}{x^2} = 1 \cr & x = \pm \sqrt {\frac{1}{2}} ,{\text{ }}x = \pm \sqrt 1 \cr & x = \pm \frac{1}{{\sqrt 2 }},{\text{ }}x = \pm 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.