Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.5 - Solving Polynomial Equations - Exercises - Page 30: 29

Answer

$$x = \pm \sqrt {\frac{{ - 1 + \sqrt 5 }}{2}} $$

Work Step by Step

$$\eqalign{ & {x^4} + {x^2} - 1 = 0 \cr & {\text{Rewrite}} \cr & {\left( {{x^2}} \right)^2} + \left( {{x^2}} \right) - 1 = 0 \cr & {\text{Let }}u = {x^2} \cr & {u^2} + u - 1 = 0 \cr & {\text{By the quadratic formula}} \cr & u = \frac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \cr & u = \frac{{ - 1 \pm \sqrt 5 }}{2} \cr & u = \frac{{ - 1 + \sqrt 5 }}{2},{\text{ }}u = \frac{{ - 1 - \sqrt 5 }}{2} \cr & {\text{Write in terms of }}x \cr & {x^2} = \frac{{ - 1 + \sqrt 5 }}{2},{\text{ }}\underbrace {{x^2} = \frac{{ - 1 - \sqrt 5 }}{2}}_{{\text{No real solutions}}} \cr & x = \pm \sqrt {\frac{{ - 1 + \sqrt 5 }}{2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.