Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 104: 66

Answer

As $C_2$ shrinks, $R$ approaches the point $(4,0)$

Work Step by Step

We can find an expression for the point $Q$. The equation of the shrinking circle is $x^2+y^2 = r^2$ Then $y^2 = r^2-x^2$ The equation of the fixed circle is $(x-1)^2+y^2 = 1$ Then $y^2 = 1-(x-1)^2 = 2x-x^2$ $Q$ is a point on both circles. We can equate the expressions for $y^2$ to find the x-coordinate of $Q$: $r^2-x^2 = 2x-x^2$ $x = \frac{r^2}{2}$ We can find the y-coordinate of $Q$: $y^2 = r^2-x^2$ $y^2 = r^2-(\frac{r^2}{2})^2$ $y^2 = r^2-\frac{r^4}{4}$ $y^2 = r^2(1-\frac{r^2}{4})$ $y = \sqrt{r^2(1-\frac{r^2}{4})}$ $y = r\sqrt{1-\frac{r^2}{4}}$ $P$ is the point $(0,r)$ $Q$ is the point $( \frac{r^2}{2}, r\sqrt{1-\frac{r^2}{4}}~)$ We can find the slope of the line connecting $P$ and $Q$: $m = \frac{r-r\sqrt{1-\frac{r^2}{4}}}{0- \frac{r^2}{2}}$ $m = \frac{2r(\sqrt{1-\frac{r^2}{4}}-1)}{r^2}$ $m = \frac{2(\sqrt{1-\frac{r^2}{4}}-1)}{r}$ We can let the point $R$ be $(R_x,0)$ Since the point $(R_x,0)$ is on this line, the slope of the line connecting $P$ and the point $(R_x,0)$ has the same slope. $m = \frac{r-0}{0-R_x}$ $\frac{2(\sqrt{1-\frac{r^2}{4}}-1)}{r} = \frac{r}{-R_x}$ $R_x = \frac{r^2}{2(1-\sqrt{1-\frac{r^2}{4}})}$ We can find the value of $R_x$ as $r$ approaches 0: $\lim\limits_{r \to 0}R_x$ $= \lim\limits_{r \to 0}\frac{r^2}{2(1-\sqrt{1-\frac{r^2}{4}})}$ $= \lim\limits_{r \to 0}\frac{r^2}{2(1-\sqrt{1-\frac{r^2}{4}})}\cdot \frac{1+\sqrt{1-\frac{r^2}{4}}}{1+\sqrt{1-\frac{r^2}{4}}}$ $= \lim\limits_{r \to 0} \frac{r^2(1+\sqrt{1-\frac{r^2}{4}})}{2[1-(1-\frac{r^2}{4})]}$ $= \lim\limits_{r \to 0} 2(1+\sqrt{1-\frac{r^2}{4}})$ $= 2(1+\sqrt{1-\frac{0}{4}})$ $= 2(1+\sqrt{1})$ $= 2(1+1)$ $= 4$ As $C_2$ shrinks, the point $R$ approaches the point $(4,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.