Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 104: 53

Answer

(a) (i) $\lim\limits_{x \to -2^+}\lfloor{x}\rfloor = -2$ (ii) $\lim\limits_{x \to -2}\lfloor{x}\rfloor $ does not exist. (iii)$\lim\limits_{x \to -2.4}\lfloor{x}\rfloor = -3$ (b) (i) $\lim\limits_{x \to n^-}\lfloor{x}\rfloor = n-1$ (ii) $\lim\limits_{x \to n^+}\lfloor{x}\rfloor = n$ (c) $\lim\limits_{x \to a}\lfloor{x}\rfloor$ exists if $a$ is not an integer. If $a$ is an integer, then the limit does not exist.

Work Step by Step

(a) (i) $\lim\limits_{x \to -2^+}\lfloor{x}\rfloor = \lim\limits_{x \to -2^+} -2 = -2$ (ii) $\lim\limits_{x \to -2^-}\lfloor{x}\rfloor = \lim\limits_{x \to -2^-} -3 = -3$ Since $\lim\limits_{x \to -2^-}\lfloor{x}\rfloor \neq \lim\limits_{x \to -2^+}\lfloor{x}\rfloor$, then $\lim\limits_{x \to -2}\lfloor{x}\rfloor $ does not exist. (iii)$\lim\limits_{x \to -2.4}\lfloor{x}\rfloor = \lim\limits_{x \to -2.4} -3 = -3$ (b) Suppose that $n$ is an integer. (i) $\lim\limits_{x \to n^-}\lfloor{x}\rfloor = \lim\limits_{x \to n^-} (n-1) = n-1$ (ii) $\lim\limits_{x \to n^+}\lfloor{x}\rfloor = \lim\limits_{x \to n^+} n = n$ (c) If $a$ is an integer, then $\lim\limits_{x \to a^-}\lfloor{x}\rfloor \neq \lim\limits_{x \to a^+}\lfloor{x}\rfloor$. Therefore, $\lim\limits_{x \to a}\lfloor{x}\rfloor$ does not exist if $a$ is an integer. If $a$ is not an integer, then $\lim\limits_{x \to a^-}\lfloor{x}\rfloor = \lim\limits_{x \to a^+}\lfloor{x}\rfloor = \lfloor{a}\rfloor$ Therefore, $\lim\limits_{x \to a}\lfloor{x}\rfloor$ exists if $a$ is not an integer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.