Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 104: 65

Answer

The limit exists when $a = 15$ $\lim\limits_{x \to -2}\frac{3x^2+15x+15+3}{x^2+x-2} = -1$

Work Step by Step

$\lim\limits_{x \to -2}\frac{3x^2+ax+a+3}{x^2+x-2}$ $=\lim\limits_{x \to -2}\frac{3x^2+ax+a+3}{(x+2)(x-1)}$ In this form, we can not evaluate this limit because there is $(x+2)$ in the denominator. If we could factor the numerator to include the factor $(x+2)$, then we could evaluate the limit. Suppose the numerator has this form: $(3x+b)(x+2)$ Then: $3x^2+ax+a+3 = (3x+b)(x+2)$ $3x^2+ax+a+3 = 3x^2+(b+6)x+2b$ $b+6 = a$ $b = a-6$ Then: $2b = a+3$ $2(a-6) = a+3$ $a = 15$ Then: $\lim\limits_{x \to -2}\frac{3x^2+ax+a+3}{x^2+x-2}$ $=\lim\limits_{x \to -2}\frac{3x^2+15x+15+3}{(x+2)(x-1)}$ $=\lim\limits_{x \to -2}\frac{3x^2+15x+18}{(x+2)(x-1)}$ $=\lim\limits_{x \to -2}\frac{(3x+9)(x+2)}{(x+2)(x-1)}$ $=\lim\limits_{x \to -2}\frac{3x+9}{x-1}$ $=\frac{3(-2)+9}{(-2)-1}$ $=\frac{3}{-3}$ $ = -1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.