Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 1 - Section 1.3 - New Functions from Old Functions - 1.3 Exercises - Page 44: 32

Answer

a) $\sqrt{3-x}+\sqrt{x^2-1}$; $x\le-1$ and $1\le x\le 3$ b) $\sqrt{3-x}-\sqrt{x^2-1}$; $x\le-1$ and $1\le x\le 3$ c) $\sqrt{(x-3)(1+x)(1-x)}$; $x\le-1$ and $1\le x\le3$ d) $\frac{\sqrt{3-x}}{\sqrt{(x+1)(x-1)}}$; $x\lt-1$ and $1\lt x\le3$

Work Step by Step

a) Add f(x) to g(x). $\sqrt{3-x}+\sqrt{x^2-1}$. There is no way to simplify. To find the domain, we just need to find the values that make the square roots positive. Because $x=3$, $x=-1$, and $x=1$ make at least one of the roots zero, these are our critical points. We check $x\lt -1$, $-1\lt x\lt 1$, $1\lt x \lt 3$, and $x\gt 3$. I tested $x=-2$, $x=0$, $x=2$, and $x=4$ to find that the only ranges that work are $x\lt-1$ and $1\lt x\lt 3$. Then we check $x=3$, $x=-1$, and $x=1$. They all work, so our domain is $x\le-1$ and $1\le x\le 3$. b) Subtract g(x) from f(x). $\sqrt{3-x}-\sqrt{x^2-1}$. We check $x\lt -1$, $-1\lt x\lt 1$, $1\lt x \lt 3$, and $x\gt 3$. The only ranges that work are $x\lt-1$ and $1\lt x\lt 3$. Then we check $x=3$, $x=-1$, and $x=1$. They all work, so our domain is $x\le-1$ and $1\le x\le 3$. c) Multiply the two functions. $(\sqrt{3-x})(\sqrt{x^2-1})$ $=\sqrt{(3-x)(x^2-1)}$ $=\sqrt{(x-3)(1+x)(1-x)}$ The zeros of this function are $x=-1, 1, 3$. We check $x\lt -1$, $-1\lt x\lt 1$, $1\lt x \lt 3$, and $x\gt 3$. The only ranges that work are $x\lt-3$ and $1\lt x\lt 3$. Then we check $x=3$, $x=-1$, and $x=1$. They all work, so our domain is $x\le-1$ and $1\le x\le 3$. d) Divide the two functions. $\frac{\sqrt{3-x}}{\sqrt{(x+1)(x-1)}}$ The zeros of this function are $x=-1, 1, 3$. We check $x\lt -1$, $-1\lt x\lt 1$, $1\lt x \lt 3$, and $x\gt 3$. The only ranges that work are $x\lt-3$ and $1\lt x\lt 3$. Then we check $x=3$, $x=-1$, and $x=1$. Only $x=3$ works, so our domain is $x\lt-1$ and $1\lt x\le3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.