Answer
\[\begin{align}
& \text{Decreasing on }\left( -\infty ,-\frac{1}{\sqrt{e}} \right),\left( 0,\frac{1}{\sqrt{e}} \right) \\
& \text{Increasing on }\left( -\frac{1}{\sqrt{e}},0 \right),\left( \frac{1}{\sqrt{e}},\infty \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& f\left( x \right)={{x}^{2}}\ln {{x}^{2}}+1 \\
& \text{Diferentiate } \\
& f'\left( x \right)={{x}^{2}}\left( \frac{2x}{{{x}^{2}}} \right)+\ln {{x}^{2}}\left( 2x \right) \\
& f'\left( x \right)=2x+2x\ln {{x}^{2}} \\
& \text{Calculate the critical points, set }f'\left( x \right)=0 \\
& 2x+2x\ln {{x}^{2}}=0 \\
& \text{Factoring} \\
& 2x\left( 1+\ln {{x}^{2}} \right)=0 \\
& 1+\ln {{x}^{2}}=0 \\
& \ln {{x}^{2}}=-1 \\
& \ln |x|=-\frac{1}{2} \\
& x=\pm{{e}^{-1/2}}=\pm \frac{1}{\sqrt{e}} \\
& and \\
& x=0 \\
& \text{From the critical values we can make the following intervals}\, \\
& \left( -\infty ,-\frac{1}{\sqrt{e}} \right),\left( -\frac{1}{\sqrt{e}},0 \right),\left( 0,\frac{1}{\sqrt{e}} \right),\left( \frac{1}{\sqrt{e}},\infty \right) \\
& \text{Now, we will evaluate between the critical values and resume } \\
& \text{in a table} \\
& \text{ }\begin{matrix}
\text{Interval} & \text{Test value}\left( x \right) & \text{Sign of }{f}'\left( x \right) & \text{Behavior of }f\left( x \right) \\
\left( -\infty ,-\frac{1}{\sqrt{e}} \right) & -1 & - & \text{Decreasing} \\
\left( -\frac{1}{\sqrt{e}},0 \right) & -\frac{1}{2\sqrt{e}} & + & \text{Increasing} \\
\left( 0,\frac{1}{\sqrt{e}} \right) & \frac{1}{2\sqrt{e}} & - & \text{Decreasing} \\
\left( \frac{1}{\sqrt{e}},\infty \right) & 1 & + & \text{Increasing} \\
{} & {} & {} & {} \\
{} & {} & {} & {} \\
\end{matrix} \\
& \text{From the table we can conlude that the function is:} \\
& \text{Decreasing on }\left( -\infty ,-\frac{1}{\sqrt{e}} \right),\left( 0,\frac{1}{\sqrt{e}} \right) \\
& \text{Increasing on }\left( -\frac{1}{\sqrt{e}},0 \right),\left( \frac{1}{\sqrt{e}},\infty \right) \\
& \text{Graph} \\
\end{align}\]