Answer
\[\begin{align}
& \text{Decreasing on }\left( \frac{1}{2},1 \right) \\
& \text{Increasing on }\left( -\infty ,\frac{1}{2} \right),\left( 1,\infty \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& f\left( x \right)=2{{x}^{5}}-\frac{15{{x}^{4}}}{4}+\frac{5{{x}^{3}}}{3} \\
& \text{Diferentiate } \\
& f\left( x \right)=10{{x}^{4}}-\frac{4\left( 15 \right){{x}^{3}}}{4}+\frac{3\left( 5 \right){{x}^{2}}}{3} \\
& f'\left( x \right)=10{{x}^{4}}-15{{x}^{3}}+5{{x}^{2}} \\
& \text{Calculate the critical points, set }f'\left( x \right)=0 \\
& 10{{x}^{4}}-15{{x}^{3}}+5{{x}^{2}}=0 \\
& \text{Factoring} \\
& 5{{x}^{2}}\left( 2{{x}^{2}}-3x+1 \right)=0 \\
& 5{{x}^{2}}\left( 2x-1 \right)\left( x-1 \right)=0 \\
& \text{We obtain} \\
& x=0,\text{ }x=\frac{1}{2},\text{ }x=1 \\
& \text{From the critical values we can make the following intervals}\, \\
& \left( -\infty ,0 \right),\left( 0,\frac{1}{2} \right),\left( \frac{1}{2},1 \right),\left( 1,\infty \right) \\
& \text{Now, we will evaluate between the critical values and resume } \\
& \text{in a table} \\
& \text{ }\begin{matrix}
\text{Interval} & \text{Test value}\left( x \right) & \text{Sign of }{f}'\left( x \right) & \text{Behavior of }f\left( x \right) \\
\left( -\infty ,0 \right) & -1 & + & \text{Increasing} \\
\left( 0,\frac{1}{2} \right) & 0.25 & + & \text{Increasing} \\
\left( \frac{1}{2},1 \right) & 0.75 & - & \text{Decreasing} \\
\left( 1,\infty \right) & 2 & + & \text{Increasing} \\
{} & {} & {} & {} \\
{} & {} & {} & {} \\
\end{matrix} \\
& \text{From the table we can conlude that the function is:} \\
& \text{Decreasing on }\left( \frac{1}{2},1 \right) \\
& \text{Increasing on }\left( -\infty ,\frac{1}{2} \right),\left( 1,\infty \right) \\
& \text{Graph} \\
\end{align}\]