Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 200: 47

Answer

$$ - \frac{{24}}{{13}}$$

Work Step by Step

$$\eqalign{ & x\root 3 \of y + y = 10,{\text{ }}\left( {1,8} \right) \cr & x{y^{1/3}} + y = 10 \cr & {\text{Differentiate both sides with respect to }}x \cr & x\left( {\frac{1}{3}{y^{ - 2/3}}} \right)y' + {y^{1/3}} + y' = 0 \cr & \frac{1}{3}x{y^{ - 2/3}}y' + {y^{1/3}} + y' = 0 \cr & \frac{1}{3}x{y^{ - 2/3}}y' + y' = - {y^{1/3}} \cr & \left( {\frac{1}{3}x{y^{ - 2/3}} + 1} \right)y' = - {y^{1/3}} \cr & y' = \frac{{ - {y^{1/3}}}}{{\frac{1}{3}x{y^{ - 2/3}} + 1}} \cr & {\text{Evaluate at the point }}\left( {1,8} \right) \cr & y' = \frac{{ - {{\left( 8 \right)}^{1/3}}}}{{\frac{1}{3}\left( 1 \right){{\left( 8 \right)}^{ - 2/3}} + 1}} \cr & y' = \frac{{ - 2}}{{13/12}} \cr & y' = - \frac{{24}}{{13}} \cr & {\text{The slope at the given point is }} - \frac{{24}}{{13.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.