Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 200: 18

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{2y - 1}}$$

Work Step by Step

$$\eqalign{ & y = \frac{{x + 1}}{{y - 1}} \cr & \left( {y - 1} \right)y = x + 1 \cr & {\text{Use the implicit differentiation}} \cr & \frac{d}{{dx}}\left[ {\left( {y - 1} \right)y} \right] = \frac{d}{{dx}}\left[ {x + 1} \right] \cr & \left( {y - 1} \right)\frac{d}{{dx}}\left[ y \right] + y\frac{d}{{dx}}\left[ {y - 1} \right] = \frac{d}{{dx}}\left[ {x + 1} \right] \cr & \left( {y - 1} \right)\frac{{dy}}{{dx}} + y\frac{{dy}}{{dx}} = 1 \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & \left[ {\left( {y - 1} \right) + y} \right]\frac{{dy}}{{dx}} = 1 \cr & \left( {2y - 1} \right)\frac{{dy}}{{dx}} = 1 \cr & \frac{{dy}}{{dx}} = \frac{1}{{2y - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.