Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 200: 33

Answer

$$\frac{{{d^2}y}}{{d{x^2}}} = \frac{{\sin y}}{{{{\left( {\cos y - 1} \right)}^3}}}$$

Work Step by Step

$$\eqalign{ & x + y = \sin y \cr & {\text{Use the implicit differentiation}} \cr & \frac{d}{{dx}}\left[ {x + y} \right] = \frac{d}{{dx}}\left[ {\sin y} \right] \cr & 1 + \frac{{dy}}{{dx}} = \cos y\frac{{dy}}{{dx}} \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & 1 = \cos y\frac{{dy}}{{dx}} - \frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\cos y - 1}} \cr & \frac{{dy}}{{dx}} = {\left( {\cos y - 1} \right)^{ - 1}} \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {{{\left( {\cos y - 1} \right)}^{ - 1}}} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = - {\left( {\cos y - 1} \right)^{ - 2}}\left( { - \sin y} \right)\frac{{dy}}{{dx}} \cr & {\text{Where }}\frac{{dy}}{{dx}} = {\left( {\cos y - 1} \right)^{ - 1}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - {\left( {\cos y - 1} \right)^{ - 2}}\left( { - \sin y} \right){\left( {\cos y - 1} \right)^{ - 1}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = - {\left( {\cos y - 1} \right)^{ - 3}}\left( { - \sin y} \right) \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{{\sin y}}{{{{\left( {\cos y - 1} \right)}^3}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.