Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 200: 17

Answer

\[y' = \frac{1}{{{e^y} + 2y\sin {y^2}}}\]

Work Step by Step

\[find\,\,\frac{{dy}}{{dx}}\,\,\,\,using\,\,implicit\,\,\,differentitation.\] \[ - \sin \,{y^2} \cdot \,\,{\left( {{y^2}} \right)^\prime } + 1 = {e^y} \cdot y'\] \[ - \sin \,\,{y^2} \cdot \,\,{\left( {{y^2}} \right)^\prime } + 1 = {e^y} \cdot y'\] \[differentiate\] \[y'{e^y} + 2yy'\sin {y^2} = 1\] \[factor\,\,out\,\,y'\] \[y'\,\left( {{e^y} + 2y\sin {y^2}} \right) = 1\] \[solve\,\,for\,\,y'\] \[y' = \frac{1}{{{e^y} + 2y\sin {y^2}}}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.