Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 193: 88

Answer

\[y''\left( t \right)+2y'\left( t \right)+5y\left( t \right)=0\]

Work Step by Step

\[\begin{align} & y''\left( t \right)+2y'\left( t \right)+5y\left( t \right)=0 \\ & \text{Where }y\left( t \right)={{e}^{-t}}\left( \sin 2t-2\cos 2t \right) \\ & \\ & \text{Calculate }y'\left( t \right) \\ & y'\left( t \right)=\frac{d}{dt}\left[ {{e}^{-t}}\left( \sin 2t-2\cos 2t \right) \right] \\ & \text{By the product rule} \\ & y'\left( t \right)={{e}^{-t}}\left( 2\cos 2t+4\sin 2t \right)-{{e}^{-t}}\left( \sin 2t-2\cos 2t \right) \\ & \text{Simplifying} \\ & y'\left( t \right)=2{{e}^{-t}}\cos 2t+4{{e}^{-t}}\sin 2t{}-{{e}^{-t}}\sin 2t+2{{e}^{-t}}\cos 2t \\ & y'\left( t \right)=4{{e}^{-t}}\cos 2t+3{{e}^{-t}}\sin 2t{{e}^{-t}} \\ & y'\left( t \right)={{e}^{-t}}\left( 4\cos 2t+3\sin 2t \right) \\ & \text{Calculate }y''\left( t \right) \\ & y''\left( t \right)=\frac{d}{dt}\left[ {{e}^{-t}}\left( 4\cos 2t+3\sin 2t \right) \right] \\ & \text{By the product rule} \\ & y''\left( t \right)={{e}^{-t}}\left( -8\sin 2t+6\cos 2t \right)-{{e}^{-t}}\left( 4\cos 2t+3\sin 2t \right) \\ & y''\left( t \right)={{e}^{-t}}\left( -8\sin 2t+6\cos 2t-4\cos 2t-3\sin 2t \right) \\ & y''\left( t \right)={{e}^{-t}}\left( 2\cos 2t-11\sin 2t \right) \\ & \text{Substitute }y(t), y'\left( t \right),\text{ and }y''\left( t \right)\text{ into } \\ & y''\left( t \right)+2y'\left( t \right)+5y\left( t \right)=0 \\ & {{e}^{-t}}\left( 2\cos 2t-11\sin 2t \right)+2{{e}^{-t}}\left( 4\cos 2t+3\sin 2t \right) \\ & +5{{e}^{-t}}\left( \sin 2t-2\cos 2t \right)=0 \\ & \text{Simplify} \\ & {{e}^{-t}}\left( 2\cos 2t-11\sin 2t \right)+{{e}^{-t}}\left( 8\cos 2t+6\sin 2t \right) \\ & +{{e}^{-t}}\left( 5\sin 2t-10\cos 2t \right)=0 \\ & \text{Combine like terms} \\ & {{e}^{-t}}\left( 2\cos 2t-11\sin 2t+8\cos 2t+6\sin 2t+5\sin 2t-10\cos 2t \right) \\ & =0 \\ & {{e}^{-t}}\left( 0 \right)=0 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.