Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 193: 85

Answer

\[\begin{align} & \mathbf{a}\text{.}\frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}\left( \frac{k}{m} \right)\cos \left( t\sqrt{\frac{k}{m}} \right) \\ & \mathbf{b}.\text{ }\frac{{{d}^{2}}y}{d{{t}^{2}}}=-\frac{k}{m}y \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }y={{y}_{0}}\cos \left( t\sqrt{\frac{k}{m}} \right) \\ & \text{a}\text{.} \\ & \text{Differentiate both sides with respect to }t \\ & \frac{dy}{dt}=\frac{d}{dt}\left[ {{y}_{0}}\cos \left( t\sqrt{\frac{k}{m}} \right) \right] \\ & \frac{dy}{dt}={{y}_{0}}\frac{d}{dt}\left[ \cos \left( t\sqrt{\frac{k}{m}} \right) \right] \\ & \frac{dy}{dt}=-{{y}_{0}}\sin \left( t\sqrt{\frac{k}{m}} \right)\frac{d}{dt}\left[ \left( t\sqrt{\frac{k}{m}} \right) \right] \\ & \frac{dy}{dt}=-{{y}_{0}}\sqrt{\frac{k}{m}}\sin \left( t\sqrt{\frac{k}{m}} \right) \\ & \text{Calculate the second derivative} \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}\sqrt{\frac{k}{m}}\frac{d}{dt}\left[ \sin \left( t\sqrt{\frac{k}{m}} \right) \right] \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}\sqrt{\frac{k}{m}}\left[ \cos \left( t\sqrt{\frac{k}{m}} \right) \right]\sqrt{\frac{k}{m}} \\ & \text{Simplifying} \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}{{\left( \sqrt{\frac{k}{m}} \right)}^{2}}\cos \left( t\sqrt{\frac{k}{m}} \right) \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}\left( \frac{k}{m} \right)\cos \left( t\sqrt{\frac{k}{m}} \right) \\ & \\ & \text{b}\text{.} \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-{{y}_{0}}\left( \frac{k}{m} \right)\cos \left( t\sqrt{\frac{k}{m}} \right) \\ & \text{Rewrite} \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-\frac{k}{m}\left( {{y}_{0}}\cos \left( t\sqrt{\frac{k}{m}} \right) \right) \\ & \text{Where }{{y}_{0}}\cos \left( t\sqrt{\frac{k}{m}} \right)=y,\text{ then} \\ & \frac{{{d}^{2}}y}{d{{t}^{2}}}=-\frac{k}{m}y \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.