Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 193: 81

Answer

$${\text{ }}y = 6x - \ln 27 + 3$$

Work Step by Step

$$\eqalign{ & y = {e^{2x}}{\text{ at the point }}x = \frac{1}{2}\ln 3 \cr & y\left( {\frac{1}{2}\ln 3} \right) = {e^{2\left( {\frac{1}{2}\ln 3} \right)}}{\text{ }} \cr & y\left( {\frac{1}{2}\ln 3} \right) = 3 \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{e^{2x}}} \right] \cr & \frac{{dy}}{{dx}} = 2{e^{2x}} \cr & {\text{Calculate the slope at }}x = \frac{1}{2}\ln 3 \cr & \frac{{dy}}{{dx}} = 2{e^{2\left( {\frac{1}{2}\ln 3} \right)}} \cr & \frac{{dy}}{{dx}} = 6 \cr & {\text{The equation of the tangent line is}} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 3 = 6\left( {x - \frac{1}{2}\ln 3} \right) \cr & y - 3 = 6x - 3\ln 3 \cr & y - 3 = 6x - \ln 27 \cr & {\text{ }}y = 6x - \ln 27 + 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.