Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 193: 83

Answer

\[\begin{align} & \mathbf{a}\mathbf{.}\text{ }-3\pi \\ & \mathbf{b}\mathbf{.}\text{ }-5\pi \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }g\left( x \right)=\sin \left( \pi f\left( x \right) \right) \\ & \text{By the chain rule } \\ & g'\left( x \right)=\frac{d}{dx}\left[ \sin \left( \pi f\left( x \right) \right) \right] \\ & g'\left( x \right)=\cos \left( \pi f\left( x \right) \right)\frac{d}{dx}\left[ \pi f\left( x \right) \right] \\ & g'\left( x \right)=\pi \cos \left( \pi f\left( x \right) \right)\frac{d}{dx}\left[ f\left( x \right) \right] \\ & g'\left( x \right)=\pi \cos \left( \pi f\left( x \right) \right)f'\left( x \right) \\ & \\ & \mathbf{a}\mathbf{.}\text{ Calculate }g'\left( 0 \right) \\ & g'\left( 0 \right)=\pi \cos \left( \pi f\left( 0 \right) \right)f'\left( 0 \right) \\ & \text{Where }f\left( 0 \right)=-3\text{ and }f'\left( 0 \right)=3 \\ & g'\left( 0 \right)=\pi \cos \left( -3\pi \right)\left( 3 \right) \\ & g'\left( 0 \right)=\pi \left( -1 \right)\left( 3 \right) \\ & g'\left( 0 \right)=-3\pi \\ & \\ & \mathbf{b}\mathbf{.}\text{ Calculate }g'\left( 1 \right) \\ & g'\left( 1 \right)=\pi \cos \left( \pi f\left( 1 \right) \right)f'\left( 1 \right) \\ & \text{Where }f\left( 1 \right)=3\text{ and }f'\left( 1 \right)=5 \\ & g'\left( 1 \right)=\pi \cos \left( 3\pi \right)\left( 5 \right) \\ & g'\left( 1 \right)=\pi \left( -1 \right)\left( 5 \right) \\ & g'\left( 0 \right)=-5\pi \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.