Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 193: 82

Answer

\[\begin{align} & \mathbf{a}\mathbf{.}\text{ }3 \\ & \mathbf{b}\mathbf{.}\text{ 0} \\ & \mathbf{c}\mathbf{.}\text{ }-\text{3} \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }g\left( x \right)=f\left( \sin x \right) \\ & g'\left( x \right)=\frac{d}{dx}\left[ f\left( \sin x \right) \right] \\ & \text{By the chain rule} \\ & g'\left( x \right)=f'\left( \sin x \right)\frac{d}{dx}\left[ \sin x \right] \\ & g'\left( x \right)=f'\left( \sin x \right)\left( \cos x \right) \\ & \\ & \mathbf{a}\mathbf{.}\text{ Calculate }g'\left( 0 \right) \\ & g'\left( 0 \right)=f'\left( \sin 0 \right)\left( \cos 0 \right) \\ & g'\left( 0 \right)=f'\left( \sin 0 \right)\left( 1 \right) \\ & g'\left( 0 \right)=f'\left( 0 \right) \\ & \text{Where }f'\left( 0 \right)=3,\text{ then} \\ & g'\left( 0 \right)=3 \\ & \\ & \mathbf{b}\mathbf{.}\text{ Calculate }g'\left( \frac{\pi }{2} \right) \\ & g'\left( \frac{\pi }{2} \right)=f'\left( \sin \frac{\pi }{2} \right)\left( \cos \frac{\pi }{2} \right) \\ & g'\left( \frac{\pi }{2} \right)=f'\left( 1 \right)\left( 0 \right) \\ & \text{Where }f'\left( 1 \right)=5,\text{ then} \\ & g'\left( \frac{\pi }{2} \right)=\left( 5 \right)\left( 0 \right) \\ & g'\left( \frac{\pi }{2} \right)=0 \\ & \\ & \mathbf{c}\mathbf{.}\text{ Calculate }g'\left( \pi \right) \\ & g'\left( \pi \right)=f'\left( \sin \pi \right)\left( \cos \pi \right) \\ & g'\left( \pi \right)=f'\left( 0 \right)\left( -1 \right) \\ & \text{Where }f'\left( 0 \right)=3,\text{ then} \\ & g'\left( \pi \right)=\left( 3 \right)\left( -1 \right) \\ & g'\left( \pi \right)=-3 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.