Answer
$y' = \frac{cos(2\sqrt x)}{\sqrt x}$
Work Step by Step
$y = sin (2 \sqrt x)$
$y' = (sin (2 \sqrt x))'$
The inner function is $g(x) = 2\sqrt x$
and the outer function is $f(u) = sin(u)$
$f'(u) = cos(u)$
$y' = (sin (2 \sqrt x))' = cos(g(x))g'(x) = cos(2\sqrt x)\times\frac{2}{2\sqrt x}= \frac{cos(2\sqrt x)}{\sqrt x}$