Answer
$y '= 10 (3x^2+7x)^9\times (6x + 7)$
Work Step by Step
$y =(3x^2+7x)^{10}$
$y ' =((3x^2+7x)^{10})' $
The inner function sis $g(x) = 3x^2+7x$
and the outer function is $f(u) = u^{10}$
$f'(u) = 10u^9$
$((3x^2+7x)^{10})' = 10 (g(x))^9\times g'(x)$
$= 10 (3x^2+7x)^9\times (6x + 7)$