Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 86: 23

Answer

$a-\\ \lim\limits_{x \to 2^+ }\frac{(x^2-4x+3)}{(x-2)^2}=-\infty \\ b-\\ \lim\limits_{x \to 2^- }\frac{(x^2-4x+3)}{(x-2)^2}=-\infty \\ c-\\ \because \lim\limits_{x \to 2^+ }\frac{(x^2-4x+3)}{(x-2)^2}=\lim\limits_{x \to 2^- }\frac{(x^2-4x+3)}{(x-2)^2}\\ \therefore \lim\limits_{x \to 2 }\frac{(x^2-4x+3)}{(x-2)^2}=-\infty $

Work Step by Step

$\lim\limits_{x \to 2^+ }\frac{(x^2-4x+3)}{(x-2)^2}=\lim\limits_{x \to 2^+ }\frac{(x-3)(x-1)}{(x-2)^2}=-\infty \\ (as\,x\,approach\,2\,from\,right\,\,\,the\,numerator\,(x-3)(x-1)approach\,\,-1\,\\and\,(x-2)^2\,is\,positive\,and\,approach\,0 \,\\so\,the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ \lim\limits_{x \to 2^- }\frac{(x^2-4x+3)}{(x-2)^2}=\lim\limits_{x \to 2^- }\frac{(x-3)(x-1)}{(x-2)^2}=-\infty \\ (as\,x\,approach\,2\,from\,left\,\,\,the\,numerator\,(x-3)(x-1)approach\,\,-1\,\\and\,(x-2)^2\,is\,positive\,and\,approach\,0 \,\\so\,the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ \because \lim\limits_{x \to 2^+ }\frac{(x^2-4x+3)}{(x-2)^2}=\lim\limits_{x \to 2^- }\frac{(x^2-4x+3)}{(x-2)^2}\\ \therefore \lim\limits_{x \to 2 }\frac{(x^2-4x+3)}{(x-2)^2}=-\infty $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.